Generating Various and Consistent Behaviors in
Simulations
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Abstract In multi-agent based simulations, providing various and consistent be-
haviors for the agents is an important issue to produce realistic and valid results.
However, it is difficult for the simulations users to manage simultaneously these
two elements, especially when the exact influence of each behaviorial parameter re-
mains unknown. We propose in this paper a generic model designed to deal with this
issue: easily generate various and consistent behaviors for the agents. The behaviors
are described using a normative approach, which allows increasing the variety by
introducing violations. The generation engine controls the determinism of the cre-
ation process, and a mechanism based on unsupervised learning allows managing
the behaviors consistency. The model has been applied to traffic simulation with the
driving simulation software used at Renault, SCANeR® II, and experimental results
are presented to demonstrate its validity.

1 Introduction

A typical application of multi-agent based simulations is the reproduction of real
world situations. In such cases, the simulations validity is first assessed by repro-
ducing known situations, before studying how new designs or behaviors influence
the results. The variety and the consistency of the behaviors are fundamental in
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these applications. The variety is often obtained by providing the agents with indi-
vidual characteristics [3]; the consistency is essential for the results validity, which
will be questioned if aberrant behaviors appear. However, these issues are often not
specifically considered. A model designed to ease the work of the designers has to
consider them and to include different characteristics: provide a high-level repre-
sentation of the behaviors, allowing abstracting the domain specificities; be flexible
and generic to adapt easily to various users needs; and finally, allow users to check
that the produced behaviors remain in the limits they wish.

The paper is organized as follows. We introduce in section 2 the different char-
acteristics of the proposed model. The behaviors are described using a normative
approach, taking advantage of the descriptive capacities of norms, rather than the
more usual prescriptive way typically used in multi-agent systems. The creation of
the behaviors is based on nondeterministic principles, and unsupervised classifica-
tion is used to control the potential violating behaviors and the norms evolution. In
section 3 we describe how the model allows producing variety and consistency, and
illustrate the genericity of the approach. Section 4 describes the application of the
model in the traffic simulation field, and the implementation in the driving simula-
tion software used at Renault, SCANeR® II. Finally, section 5 presents experimental
results demonstrating the model validity.

2 Description of the Model

2.1 Normative Representation of the Behaviors

In multi-agent based simulations, normative systems are usually used to introduce
regulation possibilities in the environment, and to add cooperation and coordination
mechanisms [1, 14]. For instance, Electronic Institutions [10] exploit them to reg-
ulate agents interactions: the institution describes the conventions governing agents
interactions, and the norms assess actions consequences within the scope of the
institution. Normative models are applied in various fields: disaster management,
market monitoring. . .

In simulations where the behaviors rely upon many parameters of different kinds
(discrete, continuous. . . ), controlling their values and their consistency is a complex
issue. The notion of norm, which presents an intuitive description means of the pa-
rameters sets, has been proposed to answer it [7]. Norms are used to describe agents
behaviors, using the following metaphor: the institution handles parameters limits,
and norms behaviors families. The institutional elements are defined as follows.

Definition 1. An Institution is a tuple (P,Dp, P;, P,) where: P is a finite set of param-
eters; Dp = {dp,Vp € P} is a set of definition domains; P; is a set of institutional
properties; and P, is a set of environmental properties.

The institution provides a fixed reference for the norms. It handles a finite set
of parameters. A definition domain is associated to each of them, to provide limits
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for the parameters. Finally, sets of institutional and environmental values link the
institution to its context. Application or domain specificities are taken into account
this way.

Definition 2. A Norm is a tuple (I,P,,Dp,,Ip,P,,,P,;,Py,) where: I is the institu-
tion the norm refers to; P, C P is the subset of parameters associated to the norm;
Dp, C Dp is the subset of definition domains; Iy, = {¥,, : dp, — R,Yp, € P, } is
a set of distance functions; B, = {p,,d,Vp,, € P,l} is a set of default values of the
parameters; P, is a set of institutional properties; and P,, is a set of environmental
properties.

A norm is defined as a subset of the institution parameters, associated to a subset
of the definition domains. For each parameter, a distance function is specified, which
provides a metric allowing quantifying the final parameter value regarding its origi-
nal definition domain. A set of default values for the parameters is defined. Finally,
the norm handles a set of institutional and environmental properties, which can spe-
cialize the institution’s ones. Conflicting norms are allowed, several norms can be
defined for the same environment, and norms can have non-empty intersections.

Definition 3. A Behavior is a tuple (N,P,,Vp,) where: N is a reference to the in-
stantiated norm; Py, is a subset of the set of parameters defined in the instantiated
norm; and Vp, is the set of values associated to the parameters.

A behavior is the instantiation of a norm. Each element of the behavior is de-
scribed by a parameter taken from the corresponding norm, and a value associated
to this parameter. This value can be taken in or outside the definition domain, but
has to remain within the institution’s one. A behavior having at least one of its pa-
rameters values outside the definition domain specified in the norm is in violation.

2.2 Generation engine

The instantiation from norm to behavior uses a generation engine build on nonde-
terminism principles, like applied in some displacement models [13]. It does not
include domain specific elements, to preserve genericity and flexibility. Its main
characteristic is to manage the determinism of the creation process: this way, users
are able to guarantee the simulations reproducibility when needed, while allowing
the creation of unexpected behaviors in other cases.

Each agent is associated to a finite set O of available objects. All objects in O are
balanced with a factor p, (Vo € O, p, € [0,1] and ¥ ,copo, = 1). A deterministic
process d is associated to the agent to select the next object. Let p be a random
parameter, p € |0, 1] (uniform distribution). At each time step ¢, O; C O is the set of
objects which can be selected. Using the probability 1/p, the agent uses randomly
one of the objects in Oy, else it uses the deterministic process d to choose it. p itself
is randomly chosen with a probability g. If ¢ = 0, the probability to choose randomly
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an object is null: the resulting behavior of the agent is deterministic. If g = 1, the
object is randomly chosen at each step, and the behavior is purely non-deterministic.
When 0 < g < 1, the randomization level of the process changes depending on the
user choice: the number of random drawings increases with g.

The engine runs in three steps (Algorithm 1). First, the parameter g is chosen
by the user or loaded from the configuration. Then, p is computed at each time
step, and used to select the next object o. Finally, the agent applies o according to
its own factor p,. This allows managing the determinism’s level: either follow the
provided deterministic process, or easily introduce nondeterminism. The engine is
used to instantiate the behaviors. To do so, it is applied at the norm level: O = P,.
O; = P, C P, is the set of available parameters for the processed Behavior. Finally,
the parameter’s value v,, is selected by the model from the corresponding norm’s
definition domain d,,,.

Algorithm 1 Generation engine

Require: a an agent associated to a set of objects O = {(0;,p,,),i € I C N}; g € [0,1] global
randomization parameter; at time #: O; C O available actions
: p < random(]0,1])

1

2: if p < g then

3:  forallo; € O, do

4: if 26 Doy <P < ZgH Do, then
5: Oselected < Oi {select 0[}

6: break

7: end if

8: end for

9: else

10: Oselected — d( Oy ) {select the object using the deterministic process d}
11: end if

12: apply( Oselecteds Pogelecied )

2.3 Control mechanism

In order to manage the evolution of agents’ behaviors, a control mechanism based
on unsupervised learning is used. The data we classify are behaviors, which can
be put under a vectorial form (vectors of parameters values). Among the various
classical algorithms [5], Kohonen neural networks offer the characteristics we are
looking for [6]. The classification is first used to study the agents’ behavior evolution
during the simulation: they can be classified to check if their behavior remains in the
original norm, or matches another one. The second use is to control the evolutions
of the norm set. When agents evolve during the simulation, new behaviors emerge.
The study of these behaviors can lead to observe new norms (i.e. sets of similar
behaviors), which are characterized using the classification mechanism. This can
help users to improve their design and analyze the simulations results. Finally, the
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network can be trained on real data sets: the norms produced can then be used to
recreate behaviors similar to the input data.

To handle these applications, a reference network is trained during the simulation
using the instantiated behaviors, before the simulation could modify their character-
istics. Only behaviors respecting the norms are used for this training. The study of
the behaviors evolution is done by classifying them with the reference network. The
evolution of the norm set is observed by training another network using the current
behaviors, and comparing the two networks.

3 Variety and Consistency

The normative data structure provides two different ways to produce various agents’
behaviors. The first method takes advantage of the norms description capabilities:
any norms can be defined, each one using a different set of parameters, associated
to different definition domains. A large potential of behaviors is thus made avail-
able, and very specific behaviors can be created by restricting the domains to single
values. Unusual behaviors may be built this way, while keeping full controls over
the simulation: the behavior is still the instantiation of a norm, and will never be
produced again if this norm is deleted. Note that within the limits of each norm,
the generation engine introduces the desired behavioral variety. The second method
is based on norms violations. The parameters and associated values are determined
during the instantiation, using the generation engine (Algorithm 2): if g # 0, violat-
ing behaviors can appear. This possibility to create violations allows the appearance
of unspecified behaviors, which increases the variety.

Algorithm 2 Instantiating violating behaviors

Require: a an agent applying norm N; g € [0, 1] the global randomization parameter
1: for all p, € Py do

2:  p < random([0,1])

3:  if p < g then {violation allowed }

4 r < random([0,1])

5: if » < p then

6: Vp, < random(Dp) {take the value in institution’s domain}
7 else

8: Vp, < random(Dy) {take the value in norm’s domain}

9: end if
10:  else
11: Vp, < random(Dy) {no violation allowed: use the norm’s domain}
12:  endif
13: end for

As for the behaviors consistency, the limits set with the norms guarantees it if vi-
olations are forbidden. To allow reproducible simulations, we only have to store the
seeds used by the generation engine. When violations are allowed, the consistency
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criteria can no more be guarantied. However, the model definition allows quantify-
ing the violations, using the distance functions specified in the norms. These func-
tions provide quantified values of the deviations, and allows excluding too deviant
behaviors.

Finally, once the content of the normative model has been defined, the execution
can be done without any modification to the engine. The model is generic, and
can be applied in various fields. For instance, if we consider soccer player agents
with a single action “shoot” where they have to choose the direction!, we have an
institution, using one parameter direction of definition domain [0,27]. Norms can
describe players always shooting right or left Dp, = {—n /4, m/4}, shooting in front
of them (Dp, = [0, 7]). .. In artificial economics, market agents are characterized by
a direction, a price and a quantity, and apply different norms on the market: zero-
intelligent traders, chartists, fundamentalists and speculators can be observed. They
can be created with the model, using the same method as presented in section 4.

4 Application to Traffic Simulation

In order to illustrate our approach, the model was applied in the context of traf-
fic simulation with the driving simulation software used at Renault, SCANeR® I1°.
SCANeR® I1is dedicated to run a wide range of driving simulators, for various appli-
cations: ergonomics of the driver’s cab, design, validation of car lightings. .. In these
applications, real humans drive a simulator, immersed in a traffic of autonomous ve-
hicles. In most experiments, the behaviors of the vehicles have to be as realistic as
possible, to allow the immersion of the users in the simulation and ensure the valid-
ity of the results. However, specific behaviors are sometimes needed, to simulate for
instance drunk drivers and study the influence on the reactions of drivers without
endangering them.

Fig. 1 The SCANeR® 11 2D and 3D visual outputs during the experiment presented in Section 5.

Various traffic management strategies exist, which use different decision models
to simulate drivers’ behaviors[11]. They often take into account individual charac-

U http://www2.1ifl.fr/SMAC/projects/cocoa/football.html
2 http://www.scaner2.com
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teristics, including several psychological factors [3]: personality, emotion, motiva-
tion and social behavior. In SCANeR® 11, the autonomous vehicles use a perception
— decision — action architecture as reasoning basis [8]. First, the perception phase
identifies the various elements which may interact with the vehicle: roads, lanes,
other vehicles, road signs and pedestrians. Then the decision phase is built on three
levels: strategic, tactical, and operational. The strategic level plans the itinerary, the
tactical level selects the next maneuver to be executed using a finite state automaton,
and the operational level computes the acceleration and wheel angles resulting from
the chosen maneuver. Finally, the action phase computes the next position, using a
dynamic model of the vehicle.

Different pseudo-psychological parameters are used during the decision phase.
The “maximal speed” parameter is the maximal acceptable speed for the driver.
“safety time” describes the security distance it will adopt, depending on its speed.
“overtaking risk” represents the risk a driver will accept to overtake, function of the
available gaps with oncoming vehicles. The “speed limit risk” allows it bypassing
speed limits, and “observe priority” and “observe signs” are boolean rules regarding
the respect of signalization and priorities. These parameters influence the resulting
behaviors, and are adapted inputs to the traffic model, so we chose in this work to
apply the proposed differentiation model directly on them. The description of the
whole set of available parameters constitute the institution: P = { maximal speed,
safety time, overtaking risk, speed limit risk, observe signs, observe priority }; Dp =
{]0,300],[0,100],[—1,2],[0,10], {true, false},{true, false}}; P; and P, are empty
sets.

Finally, the model was implemented as an external tool providing input param-
eters to the traffic simulation model, as presented in Figure 2. It was thus easily
introduced in the pre-existing application, as it remains non-intrusive.

Fig. 2 Model implementa-
tion. The simulation keeps
using its internal decision :
model, and only requires the
differentiation model for pa-

rameters creation. 1. trigger
parameters creation

Generation engine
Determinism

Data structure

nstitution, norms

4. control
parameters evolution

2. generate parameters
Simulation
Multi-agent system

3. update parameters
using simulation's internal model

5 Experimental Results

Based on this institution, three norms were introduced, describing normal, cautious
and aggressive drivers (Table 1). They reproduce the behaviors humans are able to
distinguish among a simulated traffic [15]. The simulation was done on a database
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representing a highway, on a 11 km long section (Figure 1). The vehicles were
generated at the beginning of the section, using a traffic demand of 3000 veh/h,
during 2h30. The generation function was a uniform distribution. Three detector
were placed on the highway, to record vehicles data at kilometer 2.2, 6 and 10.8.

The vehicles were created using three distinct sets of norms. In the first one,
no norms, all the vehicles are created with the same parameters (the behavioral
differentiation model is deactivated). In the second one, normal only, only the norm
“normal driver” is used. In the third case, all norms, the three norms are used, and the
norm instantiated to create a new vehicle is chosen with a probabilistic law (cautious
10 %, normal 80 %, aggressive 10 %). After the initial creation by the differentiation
model, the traffic model of the application handles all the vehicles.

Table 1 Norms parameters. The definition domain are truncated normal distribution, presented as
following: [minimal value, maximal value], (mean p, variance o)

parameter cautious driver normal driver aggressive driver
maximal speed [90,125], (115,10)  [100, 140], (125,10) [140,160], (150,5)
safety time [1.5,5.0], (2.0,0.5) [0.8,5.0], (1.5,0.5) [0.1,1.2], (0.8,0.4)
overtaking risk [—0.5,0.5], (0.0,0.25) [—0.5,0.5], (0.0,0.25) [1.0,2.0], (1.5,0.5)
speed limit risk [0.0,1.1], (1.0,0.05) [0.0,1.1], (1.0,0.05) [1.0,10.0], (1.5,0.25)

The Figure 3 represents the distributions of vehicles speeds at kilometer 6. When
no norm is used, the recorded speeds are either low (70 to 90 km/h, 46 % of the
vehicles), or high (130 km/h, 40 % of the vehicles). The left lane remains slow, the
right one fast, and we observe few lane changes or overtaking. With one norm, 60 %
of the speeds are between 90 and 115 km/h, 30 % between 115 and 140 km/h: the
resulting distribution is more balanced. In the last case, the distribution presents
a similar shape, widened because of the increased variety of maximal speeds. To
evaluate the behaviors consistency, we studied the percentage of each type of drivers
on the left and right lane (Figure 4). The set of norms used is the all norms case.
Most of the aggressive drivers are on the left lane (71 %), when cautious ones stays
on the right lane (82 %). In addition, the flow on the left lane represents only 34 %
of the total flow. These results are consistent with real world situations. With the
addition of norms, an increased variety of behaviors is observed in the simulation,
and their consistency is guarantied by the choice of the definition domains.

Fig. 3 Distribution of vehi-
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Fig. 4 Vehicles repartition on
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Different elements can be discussed. Firstly, the values used to define the norms
have been chosen empirically: an important improvement would be using calibration
with real data, which is currently under work. Secondly, the use of statistical data
conceals some of the traffic characteristics. The visual observation of the simulation
shows an important increase of behaviors variety (overtaking, speed choices. . .): we
need to introduce indicators quantifying these elements. Finally, violating behaviors
were not exploited during these simulations. They will be introduced in further ex-
periments, to simulate for instance loss of control or drunk drivers.

6 Related works and Conclusion

The generation of various behaviors in multi-agent systems has been approached
from different perspectives. In [9], the authors increase the variety by automatically
modifying characteristics of virtual humans in crowds, like clothes or accessories.
In [15], virtual personalities are used to improve the behavioral variety in traffic sim-
ulation, which contribute to the subjective realism felt by the users. However, these
approaches do not handle the issue of behaviors consistency, and the mechanisms
remain domains specific. In [12], parameters settings for simulations models are
automatically generated using a method based on bayesian networks, without user
supervision. However, the consistency issue faced with when dealing with agents
behaviors is not taken into account.

Some works have explored the use of normative approaches for traffic simulation.
Bou et al. [2] study how traffic control strategies can be improved by extending Elec-
tronic Institutions with autonomic capabilities. The system dynamically adapts to
maximize the respect of traffic law. In [4], non-normative behaviors are introduced
to improve autonomous vehicles behaviors in intersections, by allowing agents to
break some of the rules of the road. However, these works focus on the regulation
possibilities of norms, when we take advantage of their description capabilities.

In this paper, we have presented a generic model designed to manage the variety
and the consistency of agents’ behaviors in multi-agents based simulations. These
two elements are crucial for the simulations realism, and often not specifically taken
into account. The behaviors are described using a normative approach: norms offer
an intuitive way to define them, and intrinsically handle the notion of violations.
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Their creation is computed using a generation engine managing the determinism
of the process. Control capabilities have been added, based on Kohonen neural net-
works. Their purpose is to check the behaviors deviations against their initial norms,
and offer a tool to study the system evolutions. The behavioral variety is achieved
by two different ways: with the norms definitions, by creating multiple and/or large
definition domains, and by taking advantage of the violation possibilities. In the first
case, the consistency is guaranteed within the limits of the norms. In the second case,
it has to be checked by the control mechanism, using the possibility to quantify the
potential deviations. Finally, the model was applied in the traffic simulation field. It
was used to improve the realism of autonomous vehicles behaviors, and experimen-
tal results demonstrated the validity of the approach. Introducing various normative
behaviors in the traffic increased the traffic dynamicity, while providing consistent
drivers behaviors.
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